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Abstract We review the use of Voronoi tessellations for grid generation, especially
on the whole sphere or in regions on the sphere. Voronoi tessellations and the cor-
responding Delaunay tessellations in regions and surfaceson Euclidean space are
defined and properties they possess that make them well-suited for grid generation
purposes are discussed, as are algorithms for their construction. This is followed
by a more detailed look at one very special type of Voronoi tessellation, the cen-
troidal Voronoi tessellation (CVT). After defining them, discussing some of their
properties, and presenting algorithms for their construction, we illustrate the use of
CVTs for producing both quasi-uniform and variable resolution meshes in the plane
and on the sphere. Finally, we briefly discuss the computational solution of model
equations based on CVTs on the sphere.

1 Introduction

Given two setsA andB and a distance metricd(a,b) defined fora∈ A andb∈ B,
a Voronoi diagram or tessellation is a subdivision ofA into subsets, each of which
contains the objects inA that are closer, with respect to the distance metric, to one
object in B than to any other object inB. Although Voronoi tessellations can be
defined for a wide variety of sets and metrics, of interest here is the situation for
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which the setA is a region or surface in Euclidean space,B is a finite set of points
also in Euclidean space, and the metric is the Euclidean distance.

Voronoi tessellation have a long history, probably becauseVoronoi-like arrange-
ments often appear in nature. Voronoi-like tessellations appeared in 1644 in the
work of Decartes on the distribution of matter in the cosmic region near our sun.
The first systematic treatment of what we now call Voronoi tessellations was given
by Dirichlet (Dirichlet, 1850) in his study of two- and three-dimensional quadratic
forms, i.e., homogeneous, multivariate polynomials of degree two; hence, Voronoi
regions are often referred to as Dirichlet cells. Voronoi (Voronoi, 1907) generalized
the work of Dirichlet to arbitrary dimensions, again using what are now referred to
as Voronoi tessellations or diagrams.

The first documented application of Voronoi tessellations appeared in the classic
treatise of Snow (Snow, 1855) on the 1854 cholera epidemic inLondon in which he
demonstrated that proximity to a particular well was strongly correlated to deaths
due to the disease. Voronoi tessellations have continued tobe very useful in the
social sciences, e.g., in the study of dialect variations, demographics, territorial
systems, economics, and markets. Starting in the late 19th century and continu-
ing to this day, Voronoi tessellations have also been used incrystallography, espe-
cially in the study of space-filling polyhedra, although, inthis setting, various other
names have been used to denote Voronoi regions, e.g., stereohedra, fundamental
area, sphere of influence, domain of action, and plesiohedra.

It is not surprising, due to their ubiquity and usefulness, that throughout the 20th
century, Voronoi tessellations were rediscovered many times. As a result, Voronoi
regions have been called by many different names.Thiessen polygonsrefer to the
work of Theissen on developing more accurate estimates for the average rainfall
in a region.Area of influence polygonswas a term coined in connection with the
processing of data about ore distributions obtained from boreholes.Wigner-Seitz re-
gions, domain of an atom, andMeijering cellswere terms that arose from work on
crystal lattices and the Voronoi cell of the reciprocal crystal lattice is referred to as
theBrillouin zone(Kittel, 2004; Ziman, 1979). In the study of codes by, e.g., Shan-
non, Voronoi cells are calledmaximum likelihood regions(Weaver and Shannon,
1963). The field of ecology gave rise to two more alternate labels:area potentially
availableandplant polygonsfor a Voronoi region associated with a particular tree
or plant.Capillary domainsrefers to Voronoi regions in a tissue based on the centers
of capillaries.

For a long time, the routine use of Voronoi tessellations in applications was hin-
dered by the lack of efficient means for their construction. This situation has now
been remedied, at least in two and three dimensions. Voronoitessellations also be-
came closely intertwined with computational geometry. Forexample, Shamos and
Hoey (Shamos and Hoey, 1975) not only provided an algorithm for constructing
Voronoi tessellations, but also showed how they could be used to answer several
fundamental questions in computational geometry.
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Delaunay tessellations,1 the dual concept to Voronoi tessellations, also have a
long history and have been called by other names. They originated with Voronoi
(Voronoi, 1908) who called themthe ensemble (L) of simplices. Delone (Delaunay,
1928, 1934) was the first to define the tessellations bearing his name2 in terms of
empty spheres; he referred to them in terminology similar tothat of Voronoi and,
even today, some refer to Delaunay tessellations asL-partitions. The name Delau-
nay was first associated with Delaunay triangulations by Rogers (Rogers, 1964).
Delaunay tessellations have also proven to be very useful, especially for grid gener-
ation.

The first applications of Voronoi tessellations to global atmospheric modeling
were made by Williamson (Williamson, 1968) and Sadourny et al. (Sadourny et al,
1968) wherein the barotropic vorticity equation was integrated forward in time. Nei-
ther Williamson nor Sadourny referred to their meshes as Voronoi tessellations;
Williamson referred to the underlying tessellation as a “geodesic grid,” a colloquial-
ism that is used in much of the literature discussing the use of Voronoi tessellations
in global climate modeling.3 Both of these efforts produced promising results as
compared to other models available at the time. The reason for their success was re-
ally due to not having a longitudinal polar filter which distorted the earlier solutions
on latitude-longitude grids, or to not using a reduced grid which also distorted the
solutions. In addition, it helped as well that the discrete formation of the Jacobian
put forth by Arakawa (Arakawa, 1966) could be readily translated to their respec-
tive “geodesic grids.” Williamson (Williamson, 1970) continued this line of research
with the integration of the shallow-water system in primitive variable form. While
Williamson’s tessellation was extremely uniform, in a global sense, as compared to
the latitude-longitude meshes being using in other model development efforts (Kasa-
hara and Washington, 1967), the truncation error analysis by Williamson clearly re-

1 Delaunay tessellations are often referred to as Delaunay triangulations because, in two dimen-
sions, they consist of a triangulation of the points that generate the Voronoi tessellation. We choose
to refer to them as Delaunay tessellations to emphasize the fact that the concept of a dual to
Voronoi tessellations is quite general and not limited to two dimensions. When dealing with two-
dimensional settings, we will however, call them Delaunay triangulations.
2 Delone was a Russian number theorist who used the spelling Delaunay when writing papers
in French or German. He was also the first to coin both the descriptors “Dirichlet domains” and
“Voronoi regions.”
3 Adjectives such as “geodesic,” “bisection,” and “icosahedral” are often used to describe grids on
the sphere. However, there seems to be a lack of consistency about what these qualifiers mean. In
this paper, we use the following terminology.

Geodesic gridsrefer to any grid on the sphere such that the edges of the grid cells are geodesic
arcs, i.e., arcs of great circles. According to this definition, all Voronoi grids on the sphere are, by
construction, geodesic grids.

Bisection gridsrefer to any grid constructed through repeated bisection ofa platonic solid hav-
ing vertices on the sphere and edges projected onto the sphere. Bisection grids are by construction
geodesic grids. One may also define a bisection grid by repeated bisection of the Delaunay trian-
gulation corresponding to the platonic solid.

Octahedral-bisection gridsrefer to bisection grids that are based on the platonic octahedra hav-
ing 12 pentagonal faces. Note that this grid is often referred to as a “geodesic grid” or a “bisection
grid” but here we make a finder distinction between these terminologies.
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flected the fact that the Voronoi tessellation was less uniform in a local sense; the
discrete operators used in (Williamson, 1970) resulted in first-order truncation errors
that could quickly corrupt the solution. Williamson’s barotropic primitive equation
model was discretized using a collocated grid where thickness and velocity reside
at the same location.4 Since a collocated grid makes little (if any) use of the dual
mesh, it is not clear if this geodesic grid was or was not a Voronoi tessellation.

Following Williamson (Williamson, 1970), the idea of solving the barotropic
primitive equations based on a Voronoi tessellation was essentially abandoned for
fifteen years. It appears that this idea did not gain tractionfor two reasons. First,
global spectral models emerged as a superior choice to theirfinite-volume or finite-
difference counterparts because they are based on the natural polar filter so to
speak and have no pole problem. Their spectral accuracy and the reintroduction of
the fast Fourier transform (Cooley and Tukey, 1965) also contributed significantly.
Second, while numerical schemes situated on latitude-longitude meshes were bur-
dened with truncation errors comparable to those found by Williamson (Williamson,
1970), progress toward methods to mitigate the impact of these errors on the long-
term stability of simulations was much more rapid for quadrilateral meshes; see,
e.g., (Arakawa and Lamb, 1977). Unfortunately, the numerical methods developed
for the solution of the barotropic primitive equations on quadrilateral meshes did
not readily translate to Voronoi tessellations. For example, while C-grid staggered
quadrilateral meshes were essentially operational by the mid 1970s, a comparable
C-grid scheme for general Voronoi tessellations was not derived until Thuburn et.
al. (Thuburn et al, 2009) in 2009.

Because it appeared, at least at the time, that Voronoi tessellations were not well
suited for the integration of the primitive equations, whenthis idea was revisited
by Masuda and Ohnishi (Masuda and Ohnishi, 1986) they chose adifferent sys-
tem of equations to discretize. Masuda and Ohnishi formulated the shallow-water
system in vorticity and divergence variables, instead of primitive variables. In this
approach, the thickness, vorticity, and divergence are collocated at the center of
each Voronoi cell. Other similar work on solving shallow water equations based
on Voronoi mesh was done by Augenbaum, et. al. (Augenbaum, 1984; Augenbaum
et al, 1985). Randall (Randall, 1994) would later show that the collocation of vari-
ables in the vorticity-divergence system, termed the Z-grid, leads to a simulation
of geostrophic adjustment that is better than any of the other staggerings based on
primitive variables. The superior simulation of geostropic adjustment along with the
direct control over the evolution of vorticity led to robustsimulations of the shallow-
water system. Heikes and Randall (Heikes and Randall, 1995a,b) continued this line
of research with the implementation of a geometric multigrid solver to mitigate the
cost associated with solving the vorticity-divergence system. In turn, this work led
to the creation, by Ringler et. al. (Ringler et al, 2000) in 2000, of the first global
atmosphere dynamical core situated on a Voronoi tessellation.

The demonstration that Voronoi tessellations could be usedto successfully model
global atmosphere dynamics created considerable interest. By and large, all global

4 The collocated grid was later named the “A-Grid” in (Arakawaand Lamb, 1977).
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atmosphere models using finite-volume methods were based onlatitude-longitude
grids. With no satisfactory solutions to overcome the grid singularities present at the
poles of latitude-longitude grids, the quasi-uniform gridoffered by Voronoi tessella-
tions was a compelling alternative. This stimulated research toward finding numeri-
cal schemes based on primitive variables that would essentially translate the A-, B-
and C-grid staggerings from quadrilateral meshes to Voronoi tessellations. The col-
located, A-grid staggering, first proposed by Williamson (Williamson, 1970), was
successfully implemented by Tomita et. al. (Tomita et al, 2001). That effort resulted
in the first ever global cloud resolving simulation by Tomitaet al. (Tomita et al,
2005). It is important to note that (Tomita et al, 2001) and (Tomita et al, 2005) do
not employ a Voronoi tessellation since the location of the cell vertices are placed
at the barycenter5 of the Delaunay triangulation, instead of the circumcenterof the
Delaunay triangulation. As a result, the powerful results that follows from a Voronoi
tessellation are not immediately applicable to their mesh.The B-grid staggering was
successfully developed for Voronoi tessellations by Ringler and Randall (Ringler
and Randall, 2002). It is only at this point, fully two decades after the energy and po-
tential enstrophy conserving schemes for quadrilateral grids were derived (Arakawa
and Lamb, 1981), that the numerical methods on Voronoi tessellations are compa-
rable to their quadrilateral counterparts.

With the successful implementation of both the discrete vorticity-divergence sys-
tem and various discrete forms of the primitive equation system on quasi-uniform
Voronoi tessellations, attention is now turning toward theuse of variable resolu-
tion Voronoi tessellations. During this process we are essentially revisiting the trun-
cation error problems that Williamson (Williamson, 1970) identified four decades
ago when using quasi-uniform Voronoi tessellations. When pairing low-order, finite-
volume methods with variable resolution Voronoi tessellations, truncation error will
be increased, at least locally, in the regions of mesh transition. To overcome the
challenge presented by this truncation error behavior, we see three routes forward.
First, increase the accuracy of the underlying finite-volume method to reduce trun-
cation error to acceptable levels; this approach was successfully employed in (Du
et al, 2003b; Du and Ju, 2005; Weller, 2009; Weller and Weller, 2008). Second, de-
velop numerical schemes that respect both geostrophic adjustment and the need for
nonlinear stability, even when the mesh is highly distorted; this approach has been
developed by Thuburn et. al. (Thuburn et al, 2009) and Ringler et. al. (Ringler et al,
2010). And finally, we can attempt to optimize the quality of the variable resolution
meshes in order to limit the extent of the problem. In the end,some combination of
these three approaches will likely lead to the creation of a variable-resolution global
climate system model.

This chapter is focused on the mesh generation aspect of Voronoi tessellations
and, more importantly, the inherent properties that these meshes are guaranteed to
possess. We first provide a mathematical description of Voronoi tessellations and
their Delaunay triangulation counterparts. This is followed by a detailed analysis of

5 The barycenter is the center of mass; thus, for a triangle, the barycenter is at the intersection of
the three lines joining the vertices and the centers of the opposite sides whereas the circumcenter
is at the intersection of the perpendicular bisectors of thethree sides.
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one very special type of Voronoi tessellation, thecentroidal Voronoi tessellation.We
then explore the properties of centroidal Voronoi tessellations when producing both
quasi-uniform and variable resolution meshes. Finally, webriefly discuss the numer-
ical implementation of models using centroidal Voronoi tessellations. We defer until
Section 3 a discussion about why centroidal Voronoi tessellations are especially well
suited as a basis for grid generation.

2 Voronoi and Delaunay tessellations

2.1 Definitions and properties

We are given an open bounded domainΩ ∈R
d and a set of distinct points{xi}

n
i=1⊂

Ω . For each pointxi, i = 1, . . . ,n, the correspondingVoronoi region Vi , i = 1, . . . ,n,
is defined by

Vi =
{

x ∈Ω | ‖x−xi‖< ‖x−x j‖ for j = 1, · · · ,n and j 6= i
}
, (1)

where‖ ·‖ denotes the Euclidean distance (theL2 metric) inR
d. ClearlyVi ∩Vj = /0

for i 6= j, and6 ∪n
i=1V i = Ω so that{Vi}

n
i=1 is atessellationof Ω . We refer to{Vi}

n
i=1

as theVoronoi tessellationor Voronoi diagramof Ω (Okabe et al, 2000) associated
with the point set{xi}

n
i=1. A point xi is called agenerator; a subdomainVi ⊂ Ω is

referred to as theVoronoi regionor Voronoi cellcorresponding to the generatorxi .
It is clear that, except for “sides” that are part of the boundary of Ω , Voronoi

regions{Vi}
n
i=1 are polygons in two dimensions and polyhedra in three dimensions.

Figure 1 (upper left) presents a Voronoi tessellation of theunit square in two di-
mensions corresponding to ten randomly selected generators. It is guaranteed that
the line segment connecting two neighbor generators is orthogonal to the shared
edge/face and is bisected by that edge/face.

The dual of a Voronoi tessellation in the graph-theoreticalsense (i.e., by con-
necting all pair of neighbor generators) is called aDelaunay tessellationor, in two
dimensions, aDelaunay triangulation(Okabe et al, 2000) associated with the point
set{xi}

n
i=1. Elements of a Delaunay tessellation consist of triangles in two dimen-

sions and tetrahedra in three dimensions. The Delaunay triangulation corresponding
to the above ten generators is shown in Figure 1 (top right). Note that each triangle
of the Delaunay triangulation is associated with a single vertex of its dual Voronoi
tessellation. That Voronoi vertex is located at the center of the circumscribed cir-
cle of the triangle; see an illustration in Figure 1 (bottom). Each cell edge of the
Voronoi tessellations is uniquely associated with one celledge of the dual Delaunay
triangulation; each pair of edges are orthogonal, but do notnecessarily intersect. If
the pair of edges do intersect (or if the lines segments are extended to a point where

6 For the open regionΩ , Ω denotes its closure, i.e.,Ω together with its boundary points.
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Fig. 1 The Voronoi tessellation of the unit square corresponding to 10 randomly selected genera-
tors. Top-left: the bisection property; top-right: the corresponding Delaunay triangulation; bottom:
the circumcicle property.

they intersect), then the intersection point will bisect the line segment connecting
generators.

In two dimensions, the Delaunay triangulation maximizes the minimum angle,
i.e., compared to any other triangulation of the points, thesmallest angle in the
Delaunay triangulation is at least as large as the smallest angle in any other. This
property does not hold in higher dimensions. Note also that for a given set of gener-
ators, the Voronoi tessellation is always unique; however,the Delaunay tessellation
may not be unique in certain special situations, e.g., when four generators in two
dimensions form a rectangle that does not contain any other generator.

Voronoi and Delaunay tessellations of a generalsurfaceor manifoldalso have
been widely studied in the field of computer graphics; see, e.g., (Boissonnat and
Oudot, 2005). In particular, spherical Voronoi tessellation and Delaunay triangula-
tion and related algorithms are developed in (Renka, 1997).

2.2 Construction algorithms

For a given set of distinct points{xi}
n
i=1⊂Ω , the construction of the corresponding

Voronoi tessellation and Delaunay triangulation in Euclidean space has been well
studied in past decades; see (Okabe et al, 2000). Note that some algorithms directly
compute the Delaunay tessellation whereas others compute the Voronoi tessellation.
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As illustrated in Figure 1, a property of the Delaunay triangulation is that the
circle circumscribing any Delaunay triangle does not contain any other generators
in its interior. This is an important property because it allows the use of aflipping
technique. If a triangle is non-Delaunay, we can flip one of its edges; see Figure 2 for
an illustration. This leads to the simpleflip algorithm: construct any triangulation of
the points, and then flip edges until no triangle is non-Delaunay. Unfortunately, this
can takeO(n2) edge flips. It is worth noting that this edge-flipping technique does
not directly extend to three or higher dimensions; on the other hand, the circumcircle
property itself does generalize, e.g., to circumspheres ofthe Delaunay tetrahedra in
three dimensions, and some topological operations analogous to flipping have been
proposed and discussed in three dimensions (Freitag and Ollivier-Gooch, 1997; Du
and Wang, 2003; Alliez et al, 2005).

Fig. 2 The flipping operation. Left: the triangulation does not meet the Delaunay condition, i.e.,
the circumcircles contain more than three points; right: flipping the common edge produces a
Delaunay triangulation for the four points.

A usually more efficient way to construct the Delaunay triangulation is to re-
peatedly add one vertex at a time and then re-triangulate theaffected parts of the
graph. When a pointxi is added, the triangle containingxi is split into three trian-
gles and then the flip algorithm is applied. This procedure iscalled theincremental
algorithm. It takesO(n) time to search through all the triangles to find the one that
containsxi , after which we potentially flip in every triangle. The overall runtime is
theoreticallyO(n2) (Guiba et al, 1992), but often in practice this algorithm hasbet-
ter than expected performance (Bentley et al, 1980). While the technique extends to
higher dimension, the complexity could grow exponentiallyin the dimension, even
if the final Delaunay triangulation is small (Edelsbrunner and Shah, 1996).

An efficientdivide and conquer algorithm(Lee and Schachter, 1980; Guibas and
Stolfi, 1985) for constructing a Voronoi tessellation of a given set of generators in
the plane is defined as follows. One recursively draws a line to split the generators
into two sets having roughly the same number of points. Voronoi tessellations of
the two subsets are separately constructed. Then, a piecewise linear dividing line
between the two subsets is determined. Each segment of this line is itself a segment
of the perpendicular bisector corresponding to two generators belonging to different
subsets. Then, all edges or part of edges from the Voronoi tessellations of each sub-
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set that lie on the opposite side of the dividing line are deleted. Finally, the Voronoi
tessellation of the original set of generators is given by the union of the remaining
edge segments of the Voronoi tessellations of the two subsets and the piecewise lin-
ear dividing line. See Figure 3 for illustrative sketches ofthe divide and conquer
algorithm. Carefully implemented, this divide and conquermethod for construct-
ing a Voronoi tessellation of a given set of generators has complexityO(nlogn). A
divide and conquer paradigm for constructing a triangulation in d-dimensions was
developed in (Cignoni et al, 1998).

Fig. 3 Left: the divide-and-conquer algorithm after the given generators are divided into two sub-
sets (the open and filled circles), the two Voronoi tessellations of the subsets have been constructed
(the dashed lines and thin solid lines), and the piecewise linear dividing line has been determined
(the thick, red lines). Right: the Voronoi tessellation of all the generators found by deleting appro-
priate portions of the Voronoi tessellations of the two subsets.

Another efficient algorithm,Fortune’s sweep line algorithm(Fortune, 1986), is
based on the sweep line technique (Sedgewick, 1983) and involves not only a sweep
line, but also a beach line that actually consists of parabolic arcs. Without loss of
generality, one can assume that the sweep line is vertical and that it moves from left
to right. Generators to the right of the sweep line have yet tobe considered. The
beach line is to the left of the sweep line. It is defined as follows: first, for each gen-
erator to the left of the sweep line whose Voronoi region has yet to be completely
determined, one defines the parabola that separates the points that are closer to the
sweep line from those that are closer the generator; then, the beach line is deter-
mined as the right-most points in the union of the parabolas.Clearly, a vertex of
the beach line is equidistant from the two generators corresponding to the parabolas
meeting at that vertex. Thus, as the sweep line moves from left to right, the vertices
of the beach line move along the edges of the Voronoi tessellation. A parabolic arc
is added to the beach line whenever the sweep line passes a newgenerator; an arc
is removed from the beach line whenever the Voronoi cell for the corresponding
generator has been completely determined. The latter situation occurs whenever the
sweep line is tangent to a circle passing through three generators whose parabolas
form consecutive arcs of the beach line. See Figure 4 for an illustrative sketch for
Fortune’s algorithm. Carefully implemented, Fortune’s algorithm for constructing a
Voronoi tessellation of a given set of generators has complexity O(nlogn).
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Fig. 4 Set-up in Fortune’s algorithm. The red, dashed straight line is the sweep line that is moving
from left to right; the blue, piecewise parabolic curve is the beach line. The filled circles are the
generators already visited by the sweep line whereas the open circles are generators yet to be
visited. The thin black lines are edges or edge segments of Voronoi regions already constructed.

Finally, we mention“convex hull” algorithms (Chynoweth and Sewell, 1990)
for, e.g., Delaunay tessellation construction in Euclidean regions. For example, in
the two-dimensional case, one can vertically project the generators from their plane
onto a paraboloidal surface whose axis is perpendicular to that plane. The lower
boundary of the convex hull of the points on the paraboloid isgenerally a triangu-
lated shell whose vertical projection back onto the original plane gives the Delaunay
triangulation. This geometrical characterization also explains the circumcircle prop-
erty mentioned above. The plane of any triangular facet of the assumed convex shell
intersects the paraboloid on a closed curve whose projection is that projected trian-
gle’s circumcircle. Thus, other generators lying strictlyinside that circle would have
to correspond to points of the paraboloid that necessarily lie outside the putative con-
vex hull, in violation of the original assumption that a convex hull was constructed.
See (Chynoweth and Sewell, 1990; Sewell, 2002) for detaileddiscussions on this
characterization.

3 Centroidal Voronoi tessellations

Centroidal Voronoi tessellations(CVTs) are special Voronoi tessellations having
the property that thegeneratorsof the Voronoi tessellation are also thecenters of
mass(or centroidsor barycenters), with respect to a given density function, of the
corresponding Voronoi regions. CVT methodologies producehigh-quality point dis-
tributions in regions and surfaces inR

d or within sets of discrete data. In the latter
context and in its simplest form, CVT reduces to the well-known k-means cluster-
ing algorithm (Gersho and Gray, 1992; Hartigan, 1975; Kanungo et al, 2002). The
dual tessellation corresponding to a centroidal Voronoi tessellation is referred to as
a centroidal Voronoi Delaunay tessellation(CVDT).
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CVTs and CVDTs possess certain properties, which we discussbelow, that make
them very well suited for grid generation which is a focus of this paper. In addition,
in (Nguyen et al, 2009), several quality measures were used to effect a quantitative
comparison of uniform triangular mesh generators in convexand non-convex planar
regions; it was found that CVDTs result in higher quality meshes compared to those
constructed using most other algorithms, with only the method given in (Persson
and Strang, 2004) that uses spring dynamics being somewhat competitive.

Although uniform CVT-based grids have been shown to be competitive with
(or even better than) other uniform mesh generators in planar, three-dimensional,
and spherical regions, perhaps they have even greater utility for the construction of
nonuniform meshes. For one thing, through a point density function, CVT grid gen-
eration methodologies allow for a simple means of controlling the local grid size;
moreover, the density function can easily be connected to error estimators, resulting
in effective adaptive refinement strategies (Ju et al, 2002b). For another thing, CVT-
based grids feature smooth transitions from coarse to fine grids; see Section 4.1.2
for an illustration. Smooth grid transitions can greatly reduce deleterious effects,
e.g., non-physical wave reflections, that can occur if grid sizes change abruptly.

3.1 Definitions and properties

Given a density functionρ(x)≥ 0 defined onΩ , for any regionV ⊂Ω , the standard
mass center(or centroid) x∗ of V is given by

x∗ =

∫

V
xρ(x) dx

∫

V
ρ(x) dx

. (2)

Note that it is often required thatρ is integrable with respect toΩ and the volume
of the set{x |ρ(x) = 0} is zero in order to make sure (2) is well defined in practice.
A special family of Voronoi tessellations are defined as follows.

Definition 1 (Du et al, 1999)Given a density functionρ(x) defined onΩ , we re-
fer to a Voronoi tessellation{(xi,Vi)}

n
i=1 of Ω as acentroidal Voronoi tessellation

(CVT) if and only if the points{xi}
n
i=1 which serve as the generators of the associ-

ated Voronoi regions{Vi}
n
i=1 are also the centroids, with respect toρ(x), of those

regions, i.e., if and only if we have thatxi = x∗i for i = 1, . . . ,n. The corresponding
dual triangulation is called acentroidal Voronoi Delaunay tessellation (CVDT).

A generic Voronoi tessellation does not in general satisfy the CVT property; see
Figure 5 for an illustration as well as for an illustration ofCVT. On the other hand,
given a density functionρ and the numbern of generators, the CVT of a domain
always exists, although it may not be unique.

CVTs possess an optimization property that can be used as a basis for various
extensions. Given any set of points̃X = {x̃i}

n
i=1 in Ω and any tessellatioñV =
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Fig. 5 (Du et al, 1999)Left: a Voronoi tessellation of the unit square with 10 randomly selected
generators (the filled circles); the open circles denote thecentroids of the Voronoi polygons with re-
spect to a uniform density; the centroids do not coincide with the generators. Right: a 10-generator
centroidal Voronoi tessellation of the square for a uniformdensity; the generators and centroids
coincide.

{Ṽi}
n
i=1 of Ω , define aclustering energyby7

K
(
X̃, Ṽ) =

n

∑
i=1

∫

Ṽi

ρ(x)‖x− x̃i‖
2dx . (3)

Then, it can be shown thatK is minimized only if{(x̃i ,Ṽi)}
n
i=1 forms a CVT8 of

Ω . Note that if{(xi,Vi)}
n
i=1 forms a CVT, it does not necessarily minimizeK ,

e.g., it may define a saddle point (Du et al, 1999) of (3). In many applications, the
clustering energyfunctionalK is often naturally associated with quantities such as
quantization error, variance, andcost.

Asymptotically, as the number of generators becomes largerand larger, Gersho’s
conjecture (Gersho, 1979) states that, locally, the optimal CVT (in the sense of mini-
mizing the clustering energy) under the Euclidean metric forms a regular tessellation
consisting of the replication of a single polytope whose shape depends only on the
spatial dimension.9 The regular hexagon provides a confirmation of the conjecture
in two dimensions for the constant density case (Newman, 1982). For the three-
dimensional case and a constant density function, it has been proved (Barnes and
Sloane, 1983; Du and Wang, 2005) that among all lattice-based CVTs,10 the CVT
corresponding to the body-centered cubic lattice for whichthe Voronoi regions are
the space-fillingtruncated octahedrais the optimal one. For more general, non-
lattice cases and for non-constant densities, the questionremains open, although

7 Note that, a priori,V need not be a Voronoi tessellation andxi need not be inVi .
8 In fact, this can be used as ananalyticaldefinition of CVTs alternate to the geometric definition
given in Definition 1.
9 In other words, Gersho’s conjecture states that, at least for smooth density functions, if the number
of generatorsn is large enough and one focuses on a small enough region, thena CVT appears to
be a uniform tessellation involving congruent polytopes.
10 A lattice-based CVT is one whose generators are located on a lattice so that the Voronoi regions
form congruent polytopes.
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extensive numerical simulations given in (Du and Wang, 2005) demonstrated that
the truncated octahedra remains the likely candidate. It isinteresting to note that,
in two dimensions, Gersho’s conjecture implies that the dual Delaunay triangula-
tion asymptotically consists of a replications of a single polygon, namely congruent
equilateral triangles. In three dimensions, the dual Delaunay tessellation cannot con-
sist of congruent equilateral tetrahedra because the latter cannot cover three space.

3.1.1 Centroidal Voronoi tessellations of surfaces

Extensions of the VT and CVT concept tosurfaces(or manifolds) are possible; for
example, tessellations of surfaces under the Euclidean metric are considered in (Du
et al, 2003a). Suppose thatΩ is a compact and continuous hypersurface inR

d+1.
Then, for any subregionV ⊂ Ω , we callxc a constrained mass centerof V if it is a
solution of the problem:

find xc such that
∫

V
ρ(y)‖y−x‖2dy is minimized overx ∈V. (4)

Existence of minimizers of the problem (4) can be easily demonstrated using the
continuity and compactness of the objective function; however, solutions may not
be unique. It is worth noting that ifΩ is a flat surface, thenxc coincides withx∗, the
standard center of mass center ofV. If we replacex∗i in Definition 1 byxc

i , then the
resulting Voronoi tessellation{(xi ,Vi)}

n
i=1 of the surfaceΩ is called aconstrained

centroidal Voronoi tessellation(CCVT) (Du et al, 2003a), and its dual tessellation is
called aconstrained centroidal Voronoi Delaunay triangulation(CCVDT). In par-
ticular, whenΩ is the surface of a sphere, we call{(xi,Vi)}

n
i=1 aspherical centroidal

Voronoi tessellation(SCVT). Figure 6 presents an illustration of non-centroidal and
centroidal Voronoi tessellations of the sphere.
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Fig. 6 (Du et al, 2003a)Left: A spherical Voronoi tessellation with 64 randomly selected genera-
tors. Right: a 64-generator spherical centroidal Voronoi tessellation for the uniform density.

The calculation of the constrained centroidxc for any given subregionV of a
smooth surfaceΩ can be effected using Newton’s method or a damped Newton’s
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method (Ju, 2007). However, a more direct and less costly approach may be used
instead. One can first compute the standard centroidx∗ of the subregionV as defined
in (2). Note that, in general, the standard centroidx∗ of V does not lie on the surface
Ω ; for example, for a region on the sphere,x∗ is inside the sphere. Then, as is
shown in (Du et al, 2003a), the constrained centroidxc of V ∈ Ω can be found by
projectingx∗ ontoΩ along the normal direction atxc. In particular, ifV is a subset
of the surface of a sphere of radiusr, we have that its constrained center of mass is
given byxc = rx∗/‖x∗‖.

3.2 Algorithms for constructing CVTs

CVTs can be constructed either using probabilistic methodstypified by MacQueen’s
random algorithm (MacQueen, 1967) (which simply alternates between sampling
and averaging points) or deterministic methods typified by Lloyd’s method (Lloyd,
1982) (which simply alternates between constructing Voronoi tessellations and mass
centroids). Due to its effectiveness and simplicity, much attention has been focused
on Lloyd’s method.

Algorithm 1 (Lloyd’s Method ) Given a domainΩ , a density functionρ defined
on Ω , and a positive integer n (the number of generators).

1. Select an initial set of n points{xi}
n
i=1 on Ω .

2. Construct the Voronoi regions{Vi}
n
i=1 of Ω associated with{xi}

n
i=1.

3. Determine the centroids (or constrained centroids), with respect to the given
density function, of the Voronoi regions{Vi}

n
i=1; these centroids form the new set

of points{xi}
n
i=1; if Ω is a hypersurface, thenxi must be projected ontoΩ .

4. If the new points meet some convergence criterion, return{(xi,Vi)}
n
i=1 and

terminate; otherwise, go to Step2.

It has been shown (Du et al, 1999) that the energyK associated with the
Voronoi tessellationdecreases monotonicallyduring the Lloyd iteration until a CVT
is reached. Some convergence analyses of the Lloyd’s methodare given in (Du et al,
2006; Emelianenko et al, 2008).

In Step 1 of Algorithm 1, the initial set of points can be selected at random. How-
ever, because Lloyd’s method only finds local minima of the clustering energyK ,
the generator positions of the final CVT produced is affectedby the initial distribu-
tion of generators.11 Therefore, in some situations, one may want to use less noisy
starting conditions; an example is given in Section 4.1.1.

For the second step, the methods described in Section 2.2 canbe applied. There
also exist software packages that may be used for Voronoi tessellation construction.
For example, on the sphere, there is the STRIPACK package (Renka, 1997).

11 This is true for other CVT construction methods because, invariably, they only find local minima
of the clustering energy.
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The computation of centroids of the Voronoi regions in the third step of Algo-
rithm 1 can be effected by first decomposing each Voronoi region into a set of trian-
gles/tetrahedra and then using a high-order quadrature rule for triangles/tetrahedra
to approximate integrals appearing in (2). Note that if the region of interest is a sur-
face, e.g., part of the sphere or the whole sphere, then this step also includes the
projection of the Euclidean centroid onto the surface; see Section 3.1.1.

For the fourth step, an example of a stopping criterion is if some measure, e.g.,
the root mean square, of the movement of the generators from one iteration to the
next is smaller than a prescribed tolerance; alternately, one can stop if the change in
the (computable) clustering energy is smaller than a prescribed tolerance.

A probabilistic version of a generalized Lloyd’s method wasproposed in (Ju et al,
2002a) together with its parallel implementation.12

Algorithm 2 (Probabilistic Generalized Lloyd’s Method) Given a domainΩ , a
density functionρ defined onΩ , and a positive integer n.

1. Choose a positive integer q (the number of sampling points per iteration) and
constants{αi ,βi}

2
i=1 such thatα2 > 0, β2 > 0, α1 + α2 = 1, andβ1 + β2 = 1;

choose an initial set of n points{xi}
n
i=1; set ji = 1 for i = 1, . . . ,n.

2. Choose q sample points{yr}
q
r=1 in Ω at random, e.g., by a Monte Carlo

method, with the density functionρ(x) acting as the probability density function.
3. For i = 1, . . . ,n, gather together in the set Wi all sampled pointsyr closest to
xi among{xi}

n
i=1, i.e., all sampled points in the Voronoi region ofxi ; if the set Wi

is empty, do nothing; otherwise, compute the averageui of the set Wi and set

xi ←
(α1 j i + β1)xi +(α2 j i + β2)ui

j i +1
and ji ← j i +1; (5)

the new set of{xi}, along with the unchanged{x j} corresponding to empty Wj ,
form the new set of points{xi}

n
i=1; if Ω is a hypersurface, thenxi must be pro-

jected ontoΩ .
4. If the new points meet some convergence criterion, terminate; otherwise, re-
turn to Step 2.

In Steps 1 and 2 of Algorithm 2 as well as in Step 1 of Algorithm 1, points need
to be sampled according to a given density functionρ . Such sampling steps may be
accomplished by a rejection method (Du et al, 2003a; Ju et al,2002a; Ross, 1998)
which we now describe. Given a general domainΩ in the plane or on the sphere,
determine an enclosing rectangleD whose sides are parallel to the coordinate axes
or, on the sphere, are latitude and longitude lines, and which contains all points
in Ω . Setρmax = maxx∈Ω ρ(x). Then, there are two rejection tests applied. First,

12 This algorithm can also be viewed as a generalization of MacQueen’s method (MacQueen,
1967); see (Ju et al, 2002a). In fact, if in (5),q = 1, α2 = β1 = 0, andα1 = β2 = 1, Algorithm 2
reduces to MacQueen’s method.
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a point y in D is sampled according to a uniform distribution;13 this is done by
uniformly sampling each coordinate; all computer systems have a built-in uniform
random sampling method. If the sampled pointy is not inΩ , it is rejected and one
samples again. If the sampled point is inΩ , a scalarφ is sampled uniformly in the
interval [0,1]. If φ < ρ(y)/ρmax, then the sample point is accepted; otherwise, it is
rejected.14

In Step 3 of Algorithm 2, the averageui of the sampled points inWi is given by

ui =
∑y∈Wi

y
#Wi

,

where #Wi denotes the number of elements inWi . Since the points inWi are ran-
domly selected points in the Voronoi region corresponding to xi, one may viewui

as a probabilistic approximation to the centroid (or constrained centroid) ofVi ; the
larger isq, the better the centroid approximations.15 Note that j i keeps track of the
number of times thatxi has been previously updated. Some over-relaxation updat-
ing methods can be defined by appropriately choosing{α1,α2,β1,β2}; see (Ju et al,
2002a).

Algorithm 2 is much easier to implement and code than Algorithm 1. For Algo-
rithm 1, one has to explicitly construct Voronoi tessellations and determine centers
of mass of Voronoi regions. These steps are doable in two-dimensional settings such
as planar regions and regions on the sphere and in three-dimensional volumes, but
involve considerable coding. On general surfaces in three-dimensions, algorithms
for Voronoi tessellations are not generally available and in regions in four and higher
dimensions, the calculation of centers of mass become impractical. On the other
hand, to find the generators of a CVT, Algorithm 2 does not require the construction
of Voronoi tessellations or of centers of mass; both are approximated via sampling.
Thus Algorithm 2 can be applied to regions and hypersurfacesin arbitrary dimen-
sions.

The accuracy of Algorithm 1 is limited only by machine precision, although,
in practice, one would not want to iterate to that level of accuracy. On the other
hand, for Algorithm 2, accuracy is limited by the sampling errors made in Step 2.
The q sampled points are divided among the generators so that, say, in a uniform
density setting, each generator would only be assigned roughly q/n points, wheren
denotes the number of generators. Thus, if, say, Monte Carlosampling is used, the
errors in the probabilistic approximations of the centroids of the Voronoi regions
would be proportional to

√
n/q so that this is the best accuracy one can expect from

Algorithm 2. Note that, for fixedq, the accuracy degrades as we increase the number

13 Instead of random, i.e., Monte Carlo, sampling, one can, in conjunction with the rejection steps,
use quasi-Monte Carlo, Latin hypercube, etc. sampling methods (McKay and Beckman, 1979;
Niederreiter, 1992; Saltelli et al, 2004) appropriate for hypercubes.
14 Note that both rejection tests can be incorporated into a single test because an alternate means
for rejecting points that are outside ofΩ is to simply setρ(x) = 0 outside ofΩ .
15 If α1 = β1 = 0, andα2 = β2 = 1, we have in (5) thatxi ← ui , i.e., the new generators are prob-
abilistic approximations of the centroid of the Voronoi regions; this justifies saying that Algorithm
2 is a probabilistic generalized Lloyd’s method.
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of generatorsn and that, for fixedn, greater accuracy can be achieved by increasing
the number of sample pointsq. Also, note that it is useless to set a tolerance in
whatever stopping criterion is used in Step 4 of Algorithm 2 to be smaller than
O(

√
n/q).

Because accuracy control is better served by Algorithm 1, itis usually the algo-
rithm of choice for regions in the plane and on the sphere and for three-dimensional
regions. For other cases, e.g., higher-dimensional regions and general surfaces in
three dimensions, Algorithm 2 becomes more practical.

We close this section on algorithms for CVT construction by noting that several
other schemes for computing CVTs such as Newton-type algorithms and multi-level
methods are studied in (Du and Emelianenko, 2006, 2008; Liu et al, 2009).

3.3 The relation between the density function and the local mesh
size

An interesting problem about the asymptotic behavior CVTs is the distribution of
the energyK defined in (3). It was shown in (Du et al, 1999), that in the one-
dimensional case, for the CVT ofn generators{(xi,Vi)}

n
i=1 with a smooth density

functionρ , we have

Ki ≈
1
12

ρ(xi)h
3
i ≈

K

n
, ∀ 1≤ i ≤ n, (6)

wherehi denotes the diameter ofVi , Ki =
∫
Vi

ρ(x)‖x−xi‖
2 dx, andK = ∑n

i=1Ki ,
i.e., under some assumptions on the density function, asymptotically speaking, the
energy is equally distributed in the Voronoi intervals and the diameter of Voronoi
intervals are inversely proportional to the one-third power of the underlying density.
Based on (6) and the fact∑n

i=1hi = length ofΩ , we then obtain an approximation
of total clustering energy of the CVT in one dimension given by, for n large,

K ≈
1
12

(∫
Ω ρ1/3 dx

)3

n2 .

Let d denote the space dimension and setd′ = d− 1 if Ω is a hypersurface
andd′ = d otherwise. For higher dimensions, a similar conjecture about CVTs or
CCVTs can be stated as follows:

Ki ≈ c1ρ(xi)h
d′+2
i ≈

K

n
, ∀ 1≤ i ≤ n, (7)

K ≈
c2

n2/d′

(∫

Ω
ρd′/(d′+2) dx

)(d′+2)/d′

, (8)



18 Lili Ju, Todd Ringler, Max Gunzburger

wherec1,c2 are constants depending only ond′. This conjecture still remains open
for d ≥ 2 although its validity has been supported through many numerical studies
and widely used for applications in vector quantizations (Gersho and Gray, 1992)
and image processing.

A direct consequence of (7) is

hi

h j
≈

(ρ(x j)

ρ(xi)

)1/(d′+2)
. (9)

The relation (9) between the density function and the local mesh sizes is also very
useful in CVT-based adaptive mesh generation and optimization (Ju, 2007; Ju et al,
2002b).

4 Application to climate and global modeling

4.1 Global SCVT meshes

We define quantitative measures of grid quality that we can use to assess the quality
of meshing schemes on the sphere.

Given a Voronoi mesh{(xi ,Vi)}
n
i=1, setQ= {(i, j) | xi andx j are neighbors} and

let
hmin = min

(i, j)∈Q
‖xi−x j‖ and hmax= max

(i, j)∈Q
‖xi−x j‖.

Clearly, the ratio (Du et al, 2003b)

µ =
hmax

hmin
(10)

is a natural measurement of theglobal uniformityof the Voronoi mesh{xi,Vi}
n
i=1.

It is clear thatµ ≥ 1 and the smaller isµ , the more globally uniform is the Voronoi
mesh.

Letting χi denote the set of neighbor generators ofxi , a measure of thelocal
qualityor local uniformityof the Voronoi mesh atxi is given by

σi =
minj∈χi ‖xi−x j‖

maxj∈χi ‖xi−x j‖
.

Clearly 0< σi ≤ 1 and the larger isσ , the better the local uniformity.
We apply the commonly usedq-measure (Field, 2000) to evaluate the quality

of dual Delaunay triangular meshes, where, for any triangleTi , qi is defined to be
twice the ratio of the radiusRTi of the largest inscribed circle and the radiusrTi of
the smallest circumscribed circle, i.e.,
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qi = 2
RTi

rTi

=
(b+c−a)(c+a−b)(a+b−c)

abc
, (11)

wherea, b, andc denote the side lengths ofTi . Clearly, 0< qi ≤ 1 andqi = 1
corresponds to the equilateral triangle.

We then define the mesh quality measures

σmin = min
i=1,...,mD

σi , σavg =
1
n

md

∑
i=1

σi , qmin = min
i=1,...,mD

qi , qavg =
1

mD

md

∑
i=1

qi ,

wheremD denotes the number of dual Delaunay triangles. The closer these measures
are to unity, the better the mesh.

4.1.1 Uniform SCVT meshes vs. icosahedral-bisection meshes

Icosahedral-bisection meshes on the sphere have been widely used in the climate
and global modeling communities; icosahedral-bisection meshes from a family of
hierarchical meshes with 10×4ℓ−1+2 nodes at levelℓ, in which there are 12 pen-
tagons and all others cells are hexagons. The levelℓ = 1 andℓ = 2 meshes having 12
and 42 nodes, respectively, are SCVT meshes with respect to the uniform density,
but all other members of the family with levelsl > 2 are not SCVTs, although they
are quite uniform. We use the centroids of the Voronoi cells of each icosahedral-
bisection mesh as the initial guess and apply Lloyd’s methodwith a uniform density
to generate a sequence of SCVT meshes; see Figure 7. The quality measures of Sec-
tion 4 for the icosahedral-bisection and uniform SCVT meshes are given in Table
1. The SCVT meshes do better with respect to the local mesh quality measures,
i.e., with respect to local mesh uniformity, although they get worse with respect to
global mesh uniformity due to the shrinking relative size ofthe pentagonal cells as
the mesh size decreases.

4.1.2 Locally refined SCVT meshes

Let a pointx on the sphere be represented by its spherical coordinatex = (lat, lon)
with −π/2≤ lat ≤ π/2 and 0≤ lon < 2π . Setxc = (π/6,3π/2) and define

ds(x,xc) =
√

(lat−π/6)2+(lon−3π/2)2.

Define the subregion of the sphere

Smt = {x = (lat, lon) | ds(x,xc)≤ π/6}.

In the subregion, we want a high-quality mesh having a local mesh size that isγs

times smaller than that outside the subregion. We also want asmooth transition
between the coarse and fine grid regions.
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Fig. 7 From top to bottom: spherical centroidal Voronoi tessellations (left column) with 42, 162,
642, 2562 generators for a uniform density and the corresponding spherical Delaunay triangula-
tions (right column).
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Level ℓ # of generatorsMesh types µ σavg σmin qavg qmin

2 42 I-B 1.13080.91740.88430.98720.9829
SCVT 1.13080.91740.88430.98720.9829

3 162 I-B 1.17770.91110.85860.99040.9729
SCVT 1.16470.91740.88430.98720.9829

4 642 I-B 1.19070.87370.84820.98650.9701
SCVT 1.15920.91210.85250.99230.9701

5 2562 I-B 1.19400.88030.84050.98660.9694
SCVT 1.23350.91410.85110.99310.9694

6 10242 I-B 1.19480.88790.83860.98660.9692
SCVT 1.27100.91570.85070.99340.9692

7 40962 I-B 1.19510.89320.83800.98660.9692
SCVT 1.31070.91680.85040.99350.9692

8 163842 I-B 1.19510.89660.83790.98700.9692
SCVT 1.35260.91730.84940.99520.9687

9 655362 I-B 1.19520.89700.83780.99520.9691
SCVT 1.40800.91670.84650.99870.9675

Table 1 Comparisons of quality of icosahedral-bisection (I-B) anduniform spherical centroidal
Voronoi tessellation (SCVT) meshes.

Using the density-mesh size relation (9), the density function is set to

ρ(x) =






γ4
s if ds(x,xc)≤ π/6

((1−sx)γs+sx)
4 if π/6 < ds(x,xc)≤ π/6+ εs

1 otherwise,
(12)

whereεs denotes the width of the transition layer andsx = ds(x,xc)−π/6
εs

; we setγs = 3
andεs = π/12 here. The resulting SCVT with 2562 generators produced byLloyd’s
method and the corresponding dual Delaunay triangulation are presented in Figure
8 (top row). Variations in the Voronoi cell sizes and areas are plotted in Figure 8
(bottom row). The histogram of the size distribution clearly indicates that there are
two dominant mesh sizes; cells 1 through 1250 have one size, cells 1500 through
2500 have another size, and these two cells sizes differ by a factor of three as pre-
dicted by (9). For this example, we haveµ = 5.4018,σavg= 0.8712,σmin = 0.4533,
qavg = 0.9854, andqmin = 0.6886.

Figure 8 as well as Figure 9 below illustrate an important feature of nonuni-
form CVT and SCVT grids, namely smooth transitions from coarse to fine grids.
This can always be effected within the CVT/SCVT framework through the use of
smooth density functions so that, if a given density function is not smooth, it is often
beneficial to smooth it before using it to generate CVT/SCVT grids; see Section 4.2.

4.1.3 Nested SCVT meshes

For this example, the region of interest covers most of NorthAmerica, i.e.,
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Fig. 8 Top row: a spherical centroidal Voronoi tessellation (left) and its dual spherical Delaunay
triangulation (right) with 2562 generators and the density(12); bottom row: plot of Voronoi cell
sizes (left) and areas (right).

Snℓ = {x = (lat, lon) | −5◦ ≤ lat ≤ 60◦, 225◦ ≤ lat ≤ 310◦}.

Again, we want a high-quality mesh with local mesh size inSnℓ being approximately
γs = 3 times smaller that that in outside that region. This time weuse a different
means to generate a locally refined SCVT mesh because we wish to make use of
global uniform SCVT meshes.

We begin with the global uniform SCVT with 2562 nodes shown inSection 4.1.1.
The submesh falling insideSnℓ has about 355 nodes. We refine this submesh to get a
new mesh ofSnℓ with 3574 nodes (about 10 times more nodes). We then merge the
refined submesh with the remaining generators of the original unform SCVT outside
of Snℓ and produce a new global nonuniform Voronoi mesh with 5781 generators;
the result is clearly not a SCVT but we use it as an initial guess for Lloyd’s method.
We choose a Similar to (12), we choose the density function

ρ(x) =





γ4
s if x ∈ Snℓ

((1−sx)γs+sx)
4 if 0 < d(x,Snℓ)≤ εs

1 otherwise,
(13)
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wheresx = d(x,Snℓ)
εs

and the width of the transition layerεs = 0.24. Then, we apply
Lloyd’s method with this density, adding one more restriction: all generatorsxi are
fixed during the iterations ifd(xi,Snℓ) > εs.

The resulting SCVT with 5781 generators and its dual Delaunay triangulation
are presented in Figure 9 (top row). Variations of Voronoi cell sizes and areas are
plotted in the bottom row. For this example, we haveµ = 5.7079,σavg = 0.9006,
σmin = 0.4012,qavg = 0.9904 andqmin = 0.7114.
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Fig. 9 Top row: a spherical centroidal Voronoi tessellation (left) with 5781 generators and its
dual spherical Delaunay triangulation (right) produced bythe nested method; bottom row: plot of
Voronoi cell sizes (left) and areas (right).

4.2 CVT-based regional meshes of the North Atlantic Ocean

Figure 10 (top left) shows the time-mean kinetic energy froma global 0.1 degree
simulation of the North Atlantic Ocean (Smith et al, 2000). We use this data set to
determine both the boundary of the North Atlantic ocean and an appropriate density
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function, and then construct the CVT mesh based on this information; see (Ringler
et al, 2008) for details.16

Based on the kinetic energy,KE, we defined the density function

ρ = max

[
0.1,

KE
KEmax

]4

,

whereKEmax is the maximum kinetic energy in the domain. The lower bound 0.1
insures that the grid in quiescent regions is not overly coarse. We also raise the
value of the density function as we approach the boundary of the ocean so that the
boundary is resolved to a desired resolution; this is accomplished by making the
density in regions near a land boundary also depend in an inverse manner on the
distance to the boundary. The resulting mesh has a grid spacing that varies by a
factor of 10.

In order to allow for a smooth transition between regions of high and low reso-
lution, we apply a substantial amount, e.g., approximately20 passes, of Laplacian
smoothing17 to our density function. Figure 10 shows some of the resulting CVT
meshes. Whereas the two examples given above produce a mesh with two dominant
resolutions, in this example a wide spectrum of resolutionsare present. Note that this
type of mesh will lead to additional complications related to parameter settings of
sub-grid closures but that is also offers the opportunity toadaptively select multiple
closure models whose efficacy depends on the local grid size.All in all, variational
resolution meshes such as the one illustrated in Figure 10 are significantly more
ambitious than those considered in Sections 4.1.2 and 4.1.3.

4.3 Numerical simulations with SCVT meshes

4.3.1 Mesh decomposition for parallel computing

We take a global SCVT mesh with 40962 generators (about 120 kmresolution) and
separate it into 642 blocks; see Figure 11. These blocks are created so as to bal-
ance the work-per-block and to minimize the amount of information that must be
communicated between blocks; the software package “METIS”(Karypis and Ku-
mar, 1998) in which a family of multilevel partitioning algorithms is implemented
is used for this purpose. We can assign an arbitrary number ofblocks per processor
so that two types of parallelism within are supported withinthis framework, i.e.,
distributed memory across nodes and shared memory within a node.

16 In practice, we would not use such a proxy to determine a variable resolution CVT grid, but
instead would adaptively determine the grid from the simulation model output.
17 In the current context, Laplacian smoothing is a process of smoothing the a function defined on
a grid. One replaces the value of a function at a point by first averaging its value at neighboring
points and then averaging that result with its own value at the point.
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Fig. 10 Top-left: time-mean kinetic energy of the North Atlantic Ocean; top-right: a CVT mesh
with 47305 generators of the North Atlantic; bottom-left: azoom-in of the CVT mesh; bottom-
right: a zoom-in of the same region of a CVT mesh with 183907 generators.

4.3.2 Example numerical methods

As discussed in Section 1, all typical finite-volume grid staggerings used for quadri-
lateral meshes, i.e., A-, B-, C- and Z-grid staggerings, have been successfully ap-
plied to Voronoi tessellations. C-grid staggering has shown promising results, par-
ticularly when applied to variable resolution meshes. See Check: Ringler Dyncore
Chapter for a broad discussion of C-grid staggerings and see(Thuburn et al, 2009;
Ringler et al, 2010) for an in-depth discussion of C-grid staggering applied to the
nonlinear shallow-water equations.

We apply the methods developed in (Thuburn et al, 2009; Ringler et al, 2010) to
test case 5 of the standard shallow-water test cases developed in (Williamson et al,
2001). A flow in geostrophic balance is confronted with a large-scale orographic
feature at the start of the simulation,t = 0. The transient forcing att = 0 leads to
the generation of large-amplitude gravity waves and Rossbywaves. The sole forcing
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Fig. 11 Decomposition of a global SCVT mesh of 40962 generators into642 blocks. The blocks
can be distributed across computational nodes for implementation on high-performance architec-
tures.

mechanism is the presence of the orographic forcing. While no analytical solution is
known, results from high-resolution global spectral models (Lipscomb and Ringler,
2005) are adequate reference solutions for the simulationsconducted here.

Figure 12 shows the potential vorticity and kinetic energy at day 50 when using
a SCVT with 40962 cells based on a uniform density function. Shallow-water test
case 5 is shown to breakdown into 2D turbulence after day 25, so Figure 12 shows a
snapshot of this turbulent behavior. Even in the presence offully-developed 2D tur-
bulence, the simulation is stable and robust while conserving total energy to within
time truncation error. Simulations of this same test case, but using the variable res-
olution meshes shown in Figures 8 and 9, produce equally robust results.

Fig. 12 Simulation results at day 50 using a uniform SCVT mesh with the method outlined in
(Ringler et al, 2010). The figure depicts the potential vorticity field (left) and the kinetic energy
field (right). The simulation conserves potential vorticity to machine precision and total energy to
within time-truncation error.
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5 Summary

Voronoi tessellations and, in particular, centroidal Voronoi tessellations, offer a ro-
bust approach to tiling the surface of the sphere. The Delaunay triangulation is
the dual of the Voronoi tessellations, so whether hexagons or triangles are of in-
terest, this approach will result in high-quality uniform and nonuniform meshes.
Centroidal Voronoi tessellations are particularly well-suited for the generation of
smoothly varying meshes, thus providing a possible alternative to traditional nest-
ing approaches. With the recent discovery of a class of finite-volume methods that
are directly applicable to variable resolution meshes ((Thuburn et al, 2009; Ringler
et al, 2010)), it appears that the creation of variable resolution, global climate system
models is now possible.
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